Linking sequence to function in soil bacteria: sequence-directed isolation of novel bacteria contributing to soilborne plant disease suppression.
نویسندگان
چکیده
Microbial community profiling of samples differing in a specific ecological function, i.e., soilborne plant disease suppression, can be used to mark, recover, and ultimately identify the bacteria responsible for that specific function. Previously, several terminal restriction fragments (TRF) of 16S rRNA genes were statistically associated with damping-off disease suppression. This work presents the development of sequence-based TRF length polymorphism (T-RFLP)-derived molecular markers to direct the identification and isolation of novel bacteria involved in damping-off pathogen suppression. Multiple sequences matching TRF M139 and M141 were cloned and displayed identity to multiple database entries in the genera incertae sedis of the Burkholderiales. Sequences matching TRF M148, in contrast, displayed greater sequence diversity. A sequence-directed culturing strategy was developed using M139- and M141-derived markers and media reported to be selective for the genera identified within this group. Using this approach, we isolated and identified novel Mitsuaria and Burkholderia species with high levels of sequence similarity to the targeted M139 and M141 TRF, respectively. As predicted, these Mitsuaria and Burkholderia isolates displayed the targeted function by reducing fungal and oomycete plant pathogen growth in vitro and reducing disease severity in infected tomato and soybean seedlings. This work represents the first successful example of the use of T-RFLP-derived markers to direct the isolation of microbes with pathogen-suppressing activities, and it establishes the power of low-cost molecular screening to identify and direct the recovery of functionally important microbes, such as these novel biocontrol strains.
منابع مشابه
The isolation of halophilic urease-producing bacteria and the study of their nano-crystal production
Urease-producing bacteria can precipitate calcite nano-crystals by producing urease in the presence of urea and calcium. Calcite precipitation resulting from microbial activity is a process which causes cementation of soil particles in nature. The purpose of this study was to isolate urease-producing halophilic bacteria in order to precipitate calcite in saline soil. Natural samples, including ...
متن کاملIsolation and characterization of phenol degrading bacteria from Persian Gulf
Phenol and phenol compounds are environmental pollutants present in industrial wastewaters such as, coal tar, oil refineries and petrochemical plants exist. Phenol removal from industrial effluent is extremely important in protection of environment. Recently phenol biodegradation has been considered. Marine bacteria are the most important phenol biodegrader. In this study, the phenol-degrading ...
متن کاملIsolation and characterization of phenol degrading bacteria from Persian Gulf
Phenol and phenol compounds are environmental pollutants present in industrial wastewaters such as, coal tar, oil refineries and petrochemical plants exist. Phenol removal from industrial effluent is extremely important in protection of environment. Recently phenol biodegradation has been considered. Marine bacteria are the most important phenol biodegrader. In this study, the phenol-degrading ...
متن کاملIsolation, Identification and Partial Optimization of Novel Xylanolytic Bacterial Isolates from Bhilai-Durg Region, Chhattisgarh, India
Background: Plant biomass and agricultural waste products disposal is a serious problem in agriculture based countries. These wastes, usually rich in xylan can be satisfactorily converted to industrially important and useful products by efficient biotechnological application of potent xylanase producing bacteria which generally have high temperature and pH optima....
متن کاملIsolation and Identification of Phenanthrene-degrading Bacteria and Increasing the Biodegrading Ability by Synergistic Relationship
Background: Polycyclic aromatic hydrocarbons are a large group of oil contaminants with carcinogenic, mutagenic and teratogenic effects. The release of these compounds in soil destroys animals, plants and microbial diversity and has several negative impacts on physical properties of the soil including the destruction of soil aggregates reduction in pores, and increase in soil bulk density....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 75 4 شماره
صفحات -
تاریخ انتشار 2009